與農(nóng)業(yè)相關(guān)的氣候變化適應理念
氣候智慧型農(nóng)業(yè)。該理念由聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)提出,即持續(xù)提高農(nóng)業(yè)生產(chǎn)力,增強農(nóng)業(yè)對自然災害及氣候變化抵抗能力的同時,能更好地適應氣候變化、減緩農(nóng)業(yè)溫室氣體排放,增強糧食安全和農(nóng)業(yè)發(fā)展的農(nóng)業(yè)生產(chǎn)方式和發(fā)展模式。符合該理念的具體行動方案包括可持續(xù)乳業(yè)、氣候智慧型價值鏈等。目前全球范圍內(nèi)已經(jīng)有了氣候智慧型農(nóng)業(yè)聯(lián)盟,該聯(lián)盟中有很多倡議都是在推動整個農(nóng)業(yè)系統(tǒng)對于氣候變化的減緩和適應25。
氣候韌性農(nóng)業(yè)。該理念主要強調(diào)通過農(nóng)業(yè)適應的行為來減少氣候變化的影響,提升農(nóng)業(yè)系統(tǒng)對于氣候變化的韌性,傾向于更少考慮農(nóng)業(yè)減緩方面,更多考慮農(nóng)業(yè)適應方面。該理念也特別提出了可以利用基于自然的解決方案(NbS)來改善農(nóng)業(yè)生態(tài),促進農(nóng)業(yè)對減緩氣候變化的作用26。
例如,國際玉米小麥改良中心(CIMMYT)預測,到2030年,干旱和氣溫上升將使全球玉米單產(chǎn)降低高達30%。為解決這一問題,CIMMYT成功開發(fā)超過百種新的玉米品種,并在非洲推廣。通過使用抗旱玉米品種,津巴布韋農(nóng)民在干旱年份每公頃玉米產(chǎn)量能達到600公斤,可以帶來240美元的額外收入,足夠滿足當?shù)匾粋€六口之家9個月的生活。
再如,國際農(nóng)業(yè)發(fā)展基金會在2012年啟動了小農(nóng)農(nóng)業(yè)適應項目,以針對不同非洲國家的農(nóng)業(yè)發(fā)展需求,幫助他們建立更加多樣化的農(nóng)業(yè)生產(chǎn)模式,并引入技術(shù)手段,如短信實時發(fā)送天氣預報,讓農(nóng)民更加及時地了解天氣變化。截至2017年,該項目已發(fā)放約3.05億美元的援助資金。非洲大陸目前擁有390個數(shù)字解決方案,這些方案將非洲的農(nóng)業(yè)生產(chǎn)力提高了73%,農(nóng)民平均收入增加了37%27。
基于自然的解決方案(NbS)。該理念指基于生態(tài)系統(tǒng)的功能來考慮減緩和適應的方案,現(xiàn)在全球在大力推動NbS在減緩、適應等各個領(lǐng)域中的應用。不過,目前全球NbS的實施數(shù)量仍然有限,各國實施情況差距明顯。
《2020年適應差距報告》中統(tǒng)計了942個采用了NbS的項目,從項目的國別分布來看,全球有6個國家提出了超過30個NbS方案,分別是巴西、哥倫比亞、印度尼西亞、秘魯、英國和美國。40個國家尚未實施過相關(guān)方案,91個國家的實施數(shù)量在1到5之間。中國NbS項目數(shù)量位于11到20個之間,屬于中等水平28。可見,如何因地制宜地設計與實施NbS方案并發(fā)揮其巨大潛力,仍然是各國、各區(qū)域面臨的重要問題。
再生農(nóng)業(yè)。該理念由羅代爾研究所(Rodale Institute)提出,指通過免耕輪作、種植覆蓋有機質(zhì)的方法來提高農(nóng)業(yè)的生產(chǎn)率,減少能源、化學品的投入,同時改善土壤的健康。該機構(gòu)做的先期研究發(fā)現(xiàn),再生農(nóng)業(yè)作為全面的農(nóng)業(yè)生產(chǎn)模式革新,不但能減少能源投入,還能增加農(nóng)民的利潤,最重要的是能減少溫室氣體排放和提升農(nóng)業(yè)應對氣候變化的韌性29。
引用資料
1. IPCC. AR6-Climate Change 2021—The Physical Science Basis Summary for Policymakers[R]. Augest. 1–40.
2. Webber H, Ewert F, Olesen J E, et al. Diverging importance of drought stress for maize and winter wheat in Europe[J]. Nature communications, 2018, 9(1): 4249.
3. Janssens C, Havlík P, Krisztin T, et al. Global hunger and climate change adaptation through international trade[J]. Nature Climate Change, 2020, 10(9): 829-835.
4. 陳帥.氣候變化對中國小麥生產(chǎn)力的影響——基于黃淮海平原的實證分析[J].中國農(nóng)村經(jīng)濟,2015(07):4-16.
5. Li Z, Liu Z, Anderson W, et al. Chinese rice production area adaptations to climate changes, 1949–2010[J]. Environmental Science & Technology, 2015, 49(4): 2032-2037.
6. 陳兆波等,中國農(nóng)業(yè)應對氣候變化關(guān)鍵技術(shù)研究進展及發(fā)展方 向. 中國農(nóng)業(yè)科學, 2013
7. Xie W, Xiong W, Pan J, et al. Decreases in global beer supply due to extreme drought and heat[J]. Nature plants, 2018, 4(11): 964-973.
8. Ortiz-Bobea A, Ault T R, Carrillo C M, et al. Anthropogenic climate change has slowed global agricultural productivity growth[J]. Nature Climate Change, 2021, 11(4): 306-312.
9. Chen S, Gong B. Response and adaptation of agriculture to climate change: Evidence from China[J]. Journal of Development Economics, 2021, 148: 102557.
10.Zhang Y W, McCarl B A, Luan Y, et al. Climate change effects on pesticide usage reduction efforts: a case study in China[J]. Mitigation and Adaptation Strategies for Global Change, 2018, 23: 685-701.
11.Huang K, Zhao H, Huang J, et al. The impact of climate change on the labor allocation: Empirical evidence from China[J]. Journal of Environmental Economics and Management, 2020, 104: 102376.
12.何霄嘉,王敏,馮相昭.生態(tài)系統(tǒng)服務納入應對氣候變化的可行性與途徑探討[J].地球科學進展,2017,32(05):560-567.
13. 楊京彪. 哈尼梯田傳統(tǒng)農(nóng)業(yè)管理適應氣候變化的機制研究[D].
北京林業(yè)大學,2015.
14.Zabel F, Müller C, Elliott J, et al. Large potential for crop production adaptation depends on available future varieties[J]. Global Change Biology, 2021, 27(16): 3870-3882.
15.Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation[J]. Nature climate change, 2014, 4(4): 287-291.
16.Asseng S, Martre P, Maiorano A, et al. Climate change impact and adaptation for wheat protein[J]. Global change biology, 2019, 25(1): 155-173.
17.張悅,胡琦,和驊蕓,潘學標,馬雪晴,黃彬香,王靖.氣候變化背景下華北平原冬小麥冬前生育期與節(jié)氣對應及偏移分析[J].中國農(nóng)業(yè)氣象,2019,40(07):411-421.
18.Cui X, Xie W. Adapting agriculture to climate change through growing season adjustments: Evidence from corn in China[J]. American Journal of Agricultural Economics, 2022, 104(1): 249-272.
19.Zaveri E, B. Lobell D. The role of irrigation in changing wheat yields and heat sensitivity in India[J]. Nature communications, 2019, 10(1): 4144.
20.Liu Z, Yang X, Lin X, et al. Climate zones determine where substantial increases of maize yields can be attained in Northeast China[J]. Climatic Change, 2018, 149: 473-487.
21.Rising J, Devineni N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5[J]. Nature communications, 2020, 11(1): 4991.
22.李闊, 許吟隆.適應氣候變化的中國農(nóng)業(yè)種植結(jié)構(gòu)調(diào)整研究[J].中國農(nóng)業(yè)科技導報,2017,19(01):8-17.
23.Wang J, Mendelsohn R, Dinar A, et al. How Chinese farmers change crop choice to adapt to climate change[J]. Climate Change Economics, 2010, 1(03): 167-185.
24.Yang X, Chen F, Lin X, et al. Potential benefits of climate change for crop productivity in China[J]. Agricultural and Forest Meteorology, 2015, 208: 76-84.
25.管大海等.氣候智慧型農(nóng)業(yè)及其對我國農(nóng)業(yè)發(fā)展的啟示[J].中國農(nóng)業(yè)科技導報,2017,19(10):7-13.
26.Reddy P P. Climate resilient agriculture for ensuring food security[M]. New Delhi: Springer India, 2015.
27.趙琪. 非洲農(nóng)業(yè)氣候適應能力增強[N]. 中國社會科學報,2019-8-5(1749).
28.聯(lián)合國環(huán)境規(guī)劃署,《2021年適應差距報告》. https://www.unep.org/zh-hans/resources/2022nianshiyingchajubaogao?continueFlag=9cf69c8ae61f53f933cfaa4030943609
29.韓明會,李保國,張丹,李穎.再生農(nóng)業(yè)——基于土地保護性利用的可持續(xù)農(nóng)業(yè)[J].中國農(nóng)業(yè)科學,2021,54(05):1003-1016
資助項目:國家社會科學基金重點項目“雙碳目標下中國社會經(jīng)濟轉(zhuǎn)型的關(guān)鍵風險和應對戰(zhàn)略研究(22AZD098)
END —
文丨陳敏鵬 蘇詢 中國人民大學農(nóng)業(yè)與農(nóng)村發(fā)展學院
編輯丨朱琳
來源丨《可持續(xù)發(fā)展經(jīng)濟導刊》2023年第3期
【版權(quán)聲明】本網(wǎng)為公益類網(wǎng)站,本網(wǎng)站刊載的所有內(nèi)容,均已署名來源和作者,僅供訪問者個人學習、研究或欣賞之用,如有侵權(quán)請權(quán)利人予以告知,本站將立即做刪除處理(QQ:51999076)。